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Abstract
In the graphic arts industry, there is a need to convert col-

orimetric readings taken on one backing (usually white) to values
that would have been measured with a different backing (usually
black). We describe and compare different models for such a con-
version. Starting from published models using linear scaling, we
developed a new nonlinear model for a strongly scattering sub-
strate. Another new model was derived from the Clapper-Yule
model, which includes effects of internal reflectances. All these
models are applicable in both the spectral and the tristimulus
domain.

For calibration, we used measurements of the bare substrate
on both backings. We intentionally make only use of the mea-
sured spectral or XYZ values, and do not require knowledge of
the nominal CMYK values. This is particularly useful for ar-
bitrary patches measured with a stand-alone measurement de-
vice. The test data sets consisted of a large set of test prints,
originating from digital or conventional printing processes, and
covering typical ranges of mass per area. Both new models out-
performed linear regression models and the spectral versions al-
ways yielded better results than their corresponding versions in
tristimulus space.

Introduction
In the graphic arts industry, there are many choices allowed

when making spectral measurements. ISO 13655 (‘Graphic tech-

nology – Spectral measurement and colorimetric computation for

graphic arts images’) has been recently revised in order to ad-

dress various parameters. In particular, it contains requirements

for both black and white backing material. Which backing is

used depends on the application.

Nowadays, contract proofs are mostly created on a more or

less opaque inkjet paper with a dedicated ink receiving layer, and

not on the intended production stock, which is usually much less

opaque. Therefore, a contract proof matching a print on white

backing won’t match anymore if both are placed over black back-

ing.

An ideal solution would be the usage of the same backing

material throughout the workflow. However, process control re-

quires black backing, but prepress agencies need white backing.

On the one hand, black backing minimizes the impact of back

printing, the variability due to translucency effects, and prevents

influence of contamination or dirt. On the other hand, white

backing makes the printed product look more colourful and vi-

brant, and therefore sells better. Secondly, ICC-profiles based

on characterization data on white backing usually result in better

separation results. For these and more reasons, typical charac-

terization data such as FOGRA39 (representing offset printing

according to ISO 12647-2, gloss or matt coated stock, screen rul-

ing of 60 lines/cm) are made on white backing.

A conversion between white and black backing is strongly

demanded especially by the printers who currently have to rely

on proprietary means to correct the white backing proof readings

in order to achieve black backing aim values for the production

run. This means, that we model a scattering substrate in form of

a laterally infinite layer partly covered with a layer of colorants,

e.g. a paper printed on in halftoning technique.

In the literature, we find halftone models from Neuge-

bauer [1], [2], Yule and Nielsen [3], Clapper and Yule [4]. All

of these models predict the effect of a halftone print on the re-

flectance factor of a substrate with constant backing. For solid

ink layers, the model from Kubelka and Munk [5] and its recent

extensions by Yang et al. [6] would be applicable to model the

covering of the backing by a scattering and absorbing layer. But

none of these classical models covers both aspects, the modeling

of halftone prints and the influence of backing. A comprehensive

model by Mourad [7] would require patch measurements in four

configurations including transmission for calibration.

McDowell et al. [8] proposed a model based on tristimulus values

specifically for our purpose.

In this paper, different models will be compared and tested

by means of their accuracy of converting spectral or colorimetri-

cal data measured with one backing to the values that would have

been measured with a different backing.

We first present the models in [8] and propose an extension of

them. We then derive a second model from the ideas of Clapper

and Yule [4] to finally compare performance on data from a vari-

ety of printing processes on substrates of different thicknesses.
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Figure 1. Cumulative distributions of colour differences due to change

of backing. Each gray line stands for one of 35 characterization targets

measured.

Modeling
Before we start modeling, we will have a look at the situa-

tion we are modeling. We will use our models with 35 data sets
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Figure 2. Linear regression model in tristimulus space seems appropriate

(top). The relation from tristimulus values on white backing (Xw,Y w,Zw) to

difference in tristimulus values (Xw −Xb,Y w −Y b,Zw −Zb) due to backing is

almost linear (bottom).

taken from different printing processes. Each test data set cor-

responds to a characterization target with roughly one thousand

patches (either IT8.7/3, ECI 2002, or IT8.7/4; cf. ISO 12642)

measured with X-Rite Spectroscan or Barbieri SpectroLFP auto-

mated spectrophotometers, both having approximately a circular

45◦/0◦ geometry. Readings are taken from the same sheet on

black and on white backing, conforming to ISO 13655.

As illustrated in Figure 1, the median difference of mea-

sured reflectance from white to black backing is greater than

1ΔEab for a majority of the patches in the average of all sub-

strates we use for evaluation. For some substrates, the median

difference is up to 3ΔEab. This means that using uncorrected

white-backing values for production control on black backing

could lead to visually different prints, regardless of the variability

of the print process itself.

Linear models
If one places a black backing behind a newspaper page, the

immediate observation is that everything becomes darker. Look-

ing at XYZ or spectral data, we find a high correlation between

corresponding white and black backing values. Therefore a lin-

ear correction function is a reasonable first approach. In fact,

a linear scaling of spectral values was proposed by Hans Ott in

2003 according to [8]:

β b
t = (β b

s /β w
s )β w

t (1)

Here, and throughout the paper, β denotes either a re-

flectance factor relative to a perfectly white diffuser, or, for a col-

orimetric context, one of the tristimulus values X, Y, or Z.1 We

use subscript t for tint to denote data of a printed patch, subscript

s for bare substrate data; superscripts w and b denote measure-

ments on white and black backing, respectively. See also Tab. 4

in the Appendix for a glossary of used symbols.

Thus, the Ott model uses the darkening of the unprinted sub-

strate β b
s /β w

s as a correction factor. The McDowell et al. tristim-

ulus model [8] adds an offset βmin because they observed that

‘At the lowest value of each tristimulus value, the

delta between measurements made over the two back-

ings is at or near zero.’

They give an example for newsprint paper, where the darkest

patches exhibit no change from white to black backing. The Ott

model would still scale those rather light blacks down.

In our notation, the tristimulus model reads

β b
t = β w

t − (β w
s −β b

s ) · β w
t −βmin

β w
s −βmin

. (2)

The reflectance factor on black backing is calculated in eq. (2)

based on the reflectance on white backing, reduced by a correc-

tion determined from the differences of the substrate reflectance

on white and black backing and the minimum reflectance. If tints

have a purely absorptive effect, eq. (2) expresses, that the differ-

ence of tint reflectance factors on both backings is bounded by

the difference of substrate reflectance factors on both backings.

Note that this model requires one measurement of βmin – on any

backing, since it is assumed that at βmin there will be no differ-

ence between backings anyway. They suggest to use a 4-colour

solid patch (100% tone value of C, M, Y, and K) to obtain this

minimum value. This can be a problem because such a patch

is not generally available. In our evaluation, we have alterna-

tively tried to replace it by a solid black patch, which can be

found on most control strips. We also tried a spectral version of

eq. (2), despite that it was explicitly termed a ‘tristimulus correc-

tion method.’

Decomposing light paths
We will first give an alternative, more general motivation of

eq. (2). Our basic idea is to model two separate flows contribut-

ing to the reflected light, the one reaching the backside, the other

reflected before hitting the backside and therefore independent of

the backing.

Let r be the part of reemerging incident light that never

reaches the backside of the substrate. We model the passage of

light through the colorant layer by the functions ti(λ ) for r and

tb(λ ) for (1− r) respectively. The reflectance factor of a printed

1Although we are working with spectral or colorimetric data, we
mostly omit such indices for notational simplicity.
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Figure 3. An example of bare substrate reflectance factors relative to abso-

lute white, illustrating eq. 3 and eq. 4. We show the situation at λ = 550 nm,

but βs, r, tb and ti depend on wavelength resp. on tristimulus component.

patch on white backing β w
t relative to absolute white, is then

modeled as:

β w
t = rti +(1− r)tb , (3)

while β b
t , the reflectance coefficient over a black trap, should

satisfy:

β b
t = rti . (4)

An example is given in Fig. 3. The parts ti and tb are different for

each colorant layer. Generally, tb will be < ti. Since scattering

is assumed to take place in the substrate only, r depends only on

the substrate.

We will derive the approach of [8] from the difference be-

tween black and white backing,

β w
t −β b

t = (1− r)tb . (5)

Eq. (3) and (4) are also valid for the bare substrate, for which

we assume tb = β w
s . This also implies ti = β w

s , so this assump-

tion means that there is no difference for both paths on a white

backing, respectively r is determined by it.

Then (1− r) can be estimated from eq. (5) by the difference

of the bare substrate reflectance on white backing and on black

backing:

1− r = (β w
s −β b

s )/β w
s (6)

Solving eq. (5) for β b
t results in:

β b
t = β w

t − (1− r)tb . (7)

Plugging our estimation of 1− r in eq. (7), we get an estimation

of the reflectance factor on black backing:

β b
t = β w

t − (β w
s −β b

s )
tb
β w

s
(8)

This means, that the reflectance of a printed sheet on black back-

ing is modeled as the reflectance on white backing reduced by

a fraction of the difference of the bare paper measured on both

backings. This fraction will be small if the colorant is highly ab-

sorbing at the respective wavelength (when tb and ti are small).

Note that eq. (8) still contains tb, which must be estimated.

As can be seen from eq. (2), the tristimulus model uses

tb
β w

s
=

β w
t −βmin

β w
s −βmin

However, this ignores correlations of point of entry and exit of

light, which we are going to address now.

Correlation of incident and re-emitted light
In order to study the correlation of incident and re-emitted

light for ti and tb respectively, we use a Monte Carlo simulation

to calculate the point spread function (PSF) of scattered light in

white paper similar to the simulation in Jenny et al. [9]. We as-

sume isotropic scattering with a scattering length of 0.02 mm and

a homogeneous paper with thickness of 0.1 mm. In Figure 4, we

show the PSF of ti and tb in comparison with the dimensions of

a typical printing raster. We scale the tb-curve for better visibil-

ity, so peak-width relative to raster is comparable, although areas

under curves are not the same.

Note that the PSF of ti has a shape quite different from a

normal distribution. It has a sharp peak at zero and broad tails

on both sides. Thus, for a comparison of the two curves, we

do not use their widths at half maximum. A better measure for

comparison is the radius R of the circle which encloses the area,

in which a defined percentage (we use 50 %) of the light has re-

emerged. This radius was computed as Ri = 0.025mm for the

PSF of ti, and Rb = 0.14mm for the PSF of tb. Rb is in the

order of one to two times the paper thickness, and very broad

compared to the raster dimension. As a consequence, we may

safely assume that incident and re-emitted light are uncorrelated

for tb.

For the light scattered from the bulk (ti), the point spread

function is narrow compared to the raster dimension. Correla-

tion of incident and re-emitted light is quite strong, but far from

perfect. The deviation from complete correlation, known to be

the cause of optical dot gain, is not negligible and depends on the

raster type and screen ruling.

Modeling the colorant layer
Based on the different PSF for ti and tb we want to find a

better estimate of tb(λ ) in eq. (8). We may assume it is in the

range of [0,β w
s ] to model purely absorbing tints. We reduce the

spatial distribution of colorants as in the Neugebauer model to

p, the fraction of the surface covered by colorants on the side of

the light source. Let q = 1− p be the uncovered surface fraction

and T denotes the absorption of light by a single passage of the

colorant layer. Then, τu = (pTt + qTs)2 models the case where

the location of incident and remitted passage are uncorrelated,

while τc = (pT 2
t + qT 2

s ) is equivalent to the case where the lo-

cations of both passages are perfectly correlated, both ignoring

internal reflections. For the broad backing-dependent function tb
we assume completely uncorrelated passages τu:

tb = (pTt +qTs)2 . (9)

The sharp backing-independent function ti should be at least

partly correlated. Therefore we need a blend of τc and τu. Instead

of a weighted average, we follow Yule and Nielsen and use an

exponent n, the Yule-Nielsen factor, as in

β = (pβ
1
n

t +qβ
1
n

s )n (10)
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Figure 4. Simulated point spread functions of ti and tb in comparison with

the dimensions of a typical printing raster.

Yule and Nielsen justify the replacement of 2 by n as follows [3]:

‘This equation is not rigorously true for several rea-

sons. Surface reflection always plays a part; the in-

ternal reflections affect the result; the paper does not

completely diffuse the dot pattern; and it is not certain

that the small dots carry as heavy a layer of ink as the

solid, or that it is uniform over the area of the dot.’

Following this argumentation, we can model the backing-

independent function by substituting n = 21−ε and β∗ = T 2∗ ,∗ ∈
{t,s} in the Yule-Nielsen equation (10):

ti = (p(T 2
t )2ε−1

+q(T 2
s )2ε−1

)21−ε
= (pT 2ε

t +qT 2ε

s )21−ε
, (11)

where ε = const ∈ [0,1] is the degree of correlation. The sub-

stitution of T 2∗ stems from β∗ being the solid tone or substrate

reflectance factor in the Yule-Nielsen equation, where p = 1, re-

spectively q = 1 apply, hence τc = τu = T 2∗ .

Depending on T , p, and ε , equations (9) and (11) define

a family of curves. Let us have a look at two corner cases: a

completely absorbing tint at different levels of area coverage

first, and after that, a solid colorant layer with T varying from

zero to β w
s .

We fix Tt = 0, Ts = β w
s for the first case. Then, the equations

(9) and (11) can be solved for q, resulting in

q = (ti)
1

21−ε (β w
s )−2ε = (tb)

1
2 (β w

s )−1 . (12)

This means, that for Tt = 0, Ts = β w
s we obtain a power law,

tb ∝ tγ
i (13)

with γ = 2/21−ε = 2ε ∈ [1,2].

In the other corner case of solid patches (p = 1) and varying

T , we get from eq. (9) and (11):

tb/ti = T 2
t /(T 2ε

t )21−ε
= const , (14)

a linear relation with γ = 1 (actually tb = ti).
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Figure 5. Relation of reflectance factor of tone (β w
t ) on white backing to

the difference in reflectance factor due to backing. We normalize data with

substrate reflectance factor (β w
s ) and substrate reflectance factor difference

respectively. Data are in the wavelength range of 420-730 nm. The lines

show the model of eq. (15), γ ∈ [1,2].

A new regression model: ‘gamma’ model
We expect from the ideas in the previous section, that the

relation between the whole reflectance and the reflectance dif-

ference due to backing would be between linear and parabolic.

Indeed, we do observe a monotone, nonlinear relationship be-

tween measured β w
t and β w

t −β b
t at the same wavelength, data

scattering between a straight line and a parabola (Fig. 5).

So we conclude that data can be approximated by:

β b
t = β w

t − (
β w

s −β b
s
)(

β w
t

β w
s

)γ
, (15)

which is a transformation of eq. (8). The right hand term τγ

replaces tb/β w
s , describing the effectivity of the tint layer as in

β w
t = τβ w

s . The exponent γ expresses a relation between the

effect of the tint layer on the whole reflectance and its effect on

the part of the reflectance depending on the difference due to

backing. For γ = 1, eq. (15) is reduced to eq. (1), Ott’s model.

To calculate white backing values from black backing with

the gamma model, we use:

β w
t = β b

t +
(
β w

s −β b
s
)(

β b
t

β b
s

)γ

. (16)

Internal reflections model
Clapper and Yule [4] model the surface and internal reflec-

tions in an infinite series of passages and a surface reflectance

term sk. Their model can, in our terms, be written as:

β ∗
t = sk +(1− s)

(1−ρ)r∗τu

1−ρr∗τc
, (17)

where s is the surface reflectance factor, k the fraction of s cap-

tured by the instrument, ρ the diffuse internal reflection factor at

the substrate-air interface, and r∗ is the background reflectance

for the given backing. τu = (pT + q)2 models the uncorrelated,



τc = pT 2 +q models the correlated passage through the transpar-

ent colorant layer.

The Clapper-Yule model is a six parameter model

(s,k,r,ρ, p,T ), where parameter r should cover all effects due

to absorption in the substrate and effects of the substrate-backing

interface, as they say in [4]:

‘The paper itself may not be perfectly white, so that

some of the light is absorbed or transmitted by the

paper. The remainder (a fraction r of the irradiance

in the paper) is reversed in direction and attempts to

emerge from the paper.’

We use their original values, which correspond to a refrac-

tive index of 1.5 for ink and paper, and set the specular re-

flectance s = 0.04 and the diffuse internal reflection factor to

ρ = 0.6. We have confirmed that the latter value is indeed op-

timal for our data sets (not shown). The instrument factor k is

small due to the directional geometry used in our measurements

(see below), and we set sk = 0.

For convenience, we introduce the residual reflectance β̃ =
(β −sk)/(1−s). Then we solve eq. (17) for the substrate param-

eter r on both backings, setting p = 0 to model a measurement of

bare substrate:

r∗ =
β̃ ∗

s

1−ρ(1− β̃ ∗
s )

(18)

Now that we have estimated rw and rb, we solve eq. (17) for the

tint parameter T , here on backing w. To apply the Clapper-Yule

model without using real ink area coverages, we treat the CMYK

halftone patches as if they consisted of a single homogeneous ink

layer, hence setting p = 1:

T 2 =
β̃ w

t /rw

1−ρ(1− β̃ w
t )

(19)

We assume that T , being an ink layer property, is the same

for both backings. Therefore we can use eq. (17) with p = 1, T ,

and the other background reflectance rb to estimate

β b
t = sk +(1− s)

(1−ρ)rbT 2

1−ρrbT 2
(20)

(and vice versa, if we want to predict β w
t from β b

t ). If we write

eq. (20) as a function of β̃ , a non-linear, monotonic relationship

between β̃ w
s and β̃ w

s −β b
s can be shown with this internal reflec-

tions model as well. The equation then reads, after some trans-

formations:

β̃ b
t =

β̃ w
t

β̃ b
s

β̃ w
s

(
ρβ̃ w

s +(1−ρ)
)

ρβ̃ w
t

(
1− β̃ b

s

β̃ w
s

)
+ρβ̃ b

s +(1−ρ)
(21)

This model (21) also simplifies to Ott’s model (1) for ρ = 0

and s = 0 (i. e., β̃ = β ).

Model evaluation
While the models can be used in both directions, we focus

on the conversion from white backing data to black backing (the

prediction of black backing data). CIELAB values are calculated

from measured data and model output using CIE Standard Illu-

minant D50 and the CIE 1931 Standard 2◦ Observer.

We evaluated our models with data taken from different

printing processes, and compared our models to the uncorrected
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Figure 6. Quantiles of the cumulative error distribution of the model in

eq. (15) with varying γ. Vertical scale in ΔEab units. γ = 1.4 is optimal.

use of measurements on one backing, and to the two linear mod-

els from [8]. Results are given as cumulative distributions of the

prediction error in ΔEab (shown in Fig. 7 and 8, and their quan-

tiles in Tab. 1 and 2). The raw differences are mostly smaller

than 5ΔEab, so CIELAB is an appropriate space for evaluation.

The test data sets are part of Fogra’s characterization data

repository,2 where each set corresponds to a characterization tar-

get with typically 1500 patches, measured once on black, once

on white backing, as already mentioned in the introduction.

Measurements have been conducted in dry state without a

polarization filter. A subset has also been subsequently measured

with a polarization filter. We will discuss the influence of filters

on the values measured and on the performance of the models in

the next section.

For the gamma regression model, the value of γ had to be

determined first. Over all data sets, γ = 1.4 fits well, as illustrated

in Fig. 6. The internal reflections model was used with standard

parameters ρ = 0.6 and s = 0.04. Similar to γ , we have confirmed

that ρ = 0.6 is indeed an optimal choice (data not shown).

The models can only be as precise as the measurements.

We have estimated a lower bound for practical measurement er-

ror by measuring an IT8/7.4 target with randomized patch order

and patch size > 6mm on glossy offset stock. We have taken two

passes on the same day on white backing with an X-Rite Spec-

troscan table with no filters equipped (M0, see below). For each

patch, data were averaged from three consecutive readings. The

same procedure was repeated on black backing with the same in-

strument. This resulted in two measurement error distributions,

once for white and black backing respectively. The measurement

error distribution on white backing determined this way had a

50 % quantile of 0.13ΔEab and a 90 % quantile of 0.25ΔEab.

The measurement error distribution on black backing had a 50 %

quantile of 0.09ΔEab and a 90 % quantile of 0.18ΔEab.

2http://forschung.fogra.org/index.php?menuid=159&getlang=en
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Measurements on white backing were used to predict black backing values,

using spectral data. Error was measured in ΔEab units.

Discussion
All models presented in this paper perform better than no

correction at all. The predictions using spectral data are gener-

ally more accurate than the ones from tristimulus values. For

comparison, we just show the tristimulus-based results for the

McDowell model, denoted ‘(XYZ, min)’.

We have shown that our models, both the gamma regression

model and the internal reflections model, contain the Ott model

as a corner case (γ = 1, resp. s,ρ → 0). Hence it is not surprising

that the Ott model is outperformed by both.

We have argued that the linear regression of the tristimulus model

in [8] can be improved by explicitly modeling the part of light

reflected by the backing and accounting for an appropriate point

spread function. The resulting regression curve fits the data bet-

ter than both linear models.

The approach based on internal reflections yields results very

similar to the gamma regression model. As Hébert and Hersch

pointed out in [10], the relationship from layer transmittance tλ
(as they call it) to reflectance is not linear in the Clapper-Yule

model. It has a shape very similar to the one described by the

Table 1. Quantiles of prediction error distributions, averaged
over all targets, by different models. Measurements on white
backing β w

t were used to predict black backing values β b
t .

Error was measured in ΔEab units.

Name 50% 90% 95% 99%
Uncorrected (just using β w

t ) 1.18 2.22 2.50 3.04
McDowell (XYZ, min) 0.55 0.93 1.07 1.47

Ott (spectral) 0.61 0.93 1.06 1.42
McDowell (spectral, min) 0.53 0.86 0.99 1.35

Gamma Regression 0.31 0.61 0.73 1.10
Gamma (min corrected) 0.31 0.62 0.73 1.09

Internal Reflections 0.33 0.65 0.77 1.15
Internal Reflections (s=0) 0.33 0.65 0.78 1.15

gamma model (see [10], Figure 15).

In the case of linear models, correcting βmin is a good idea, as the

McDowell model performs better than the Ott model for this rea-

son. Our data shows, that the gamma regression model does not

profit from subtracting the darkest spectrum from both spectra in

βt/βs before applying the exponentiation (denoted ‘Gamma (min

corrected)’ in tables 1 and 2 respectively). We attribute this to

the different shape of the regression curve.

Since the internal reflections model is already considerably sim-

plified by assuming a non-screened (non-halftoned), homoge-

neous colorant layer, we ask whether the small surface reflec-

tion term is important for our application. We present results for

s = 0 which show that there is no significant difference. The non-

screened approximation probably dominates the model error.

The accuracy of the tested models is virtually the same if one

converts from black backing to white backing. Maximum differ-

ences are smaller than 0.04ΔEab. All in all, the gamma regres-

sion model and the internal reflections model are already close

to the limit of measurement uncertainty (less than a factor of 3

away from the quantile values of our optimum conditions).

Measurement condition differences
In practical colour management use cases it is often de-

sired to convert between different measurement conditions, such

as those defined in ISO 13655, namely M0, M1, M2, and M3.

They differ e. g. by the level of UV excitation, the usage of po-

larization filters and potentially the used backing. For process

control in offset printing the correlation between measurements

with (M3) and without polarization filters (typically M0) is of

great interest. While polarization filters suppress first surface

reflectance and therefore achieve stable readings with both wet

sheets directly after printing and dried sheets, measurements for

final quality assessment (e.g. print compliance according to ISO

12647-2) must be made without polarization filters. We compare

data from 20 targets that have been measured on both black and

white backing, once without filters (M0), and once with polariza-

tion filters (M3) to remove the specular part of reflectance.

Differences due to backing are bigger with than without polariza-

tion filters. Expressed in numbers, half the patches differ by more

than 1.8ΔEab due to backing when measured with M3, compared

to 1.6ΔEab with M0 (Tab. 3).

The quantiles of the cumulative prediction error distribution of

the models deviate less than 0.1ΔEab between M0 and M3, with

the notable exception of the Ott model that consistently per-

formed better correcting backing change under condition M3.

This means, that the models presented here can convert M3 mea-

surements as well as M0 measurements with regard to the back-

Table 2. Quantiles of prediction error distributions, averaged
over all targets, by different models. Measurements on black
backing β b

t were used to predict white backing values β w
t .

Error was measured in ΔEab units.

Name 50% 90% 95% 99%
Uncorrected (just using β b

t ) 1.18 2.22 2.50 3.04
McDowell (XYZ, min) 0.56 0.94 1.09 1.49

Ott (spectral) 0.62 0.95 1.08 1.45
McDowell (spectral, min) 0.55 0.88 1.01 1.38

Gamma Regression 0.31 0.62 0.74 1.12
Gamma (min corrected) 0.32 0.62 0.74 1.11

Internal Reflections 0.33 0.66 0.79 1.17
Internal Reflections (s=0) 0.33 0.66 0.79 1.17



Table 3. Averaged quantiles of error distributions of pre-
dictions of β b

t from β w
t under two measurement conditions

(20 targets, total of 27868 patches). Error was measured in
ΔEab units. M0: no filter; M3: polarization filters.

Name 50% 90% 95% 99%
Uncorrected (using β w

t ), M0 1.60 3.18 3.61 4.33
Uncorrected (using β w

t ), M3 1.84 3.58 4.05 4.76
Internal Reflections (s=0), M0 0.36 0.62 0.72 1.08
Internal Reflections (s=0), M3 0.34 0.64 0.75 0.99

ing. However, the models presented here do not predict M3 mea-

surements from M0 measurements.

For reasons of usability in practical applications, we have

tested the models with fixed parameters γ,ρ,k or s. Variation of

these parameters might yield more accurate results for particular

substrates.

Conclusions
We have proposed two models to predict the influence of

backing on the reflectance factor of colour patches on a particu-

lar substrate. The reflectance factor of substrate and patches are

measured on one backing and are then used to predict values on

the other backing by measuring only the substrate reflectance fac-

tor on this second backing. Both models fulfill this requirement

of usability.

The new gamma regression model as well as an application

of the ideas of Clapper and Yule perform better than linear mod-

els. There is no significant difference in performance between

the internal reflections model and the gamma regression model.

The developed models are currently subject for process con-

trol implementation for the printing industry. However, fur-

ther aspects such as wet-dry-behaviour, lack of inter-instrument

agreement, and problems with regard to the usage of optical

brightener agents (OBA) have also to been taken into account.

Closer analysis with regard to CMYK values of the individual

patches and correlations to point spread function or angular dis-

tribution of light may be subject of future work as well.
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Table 4. Glossary of parameters and symbols.

Xw,Y w,Zw Tristimulus values on white backing
Xb,Y b,Zb Tristimulus values on black backing

β w
s Reflectance factor of substrate on white backing

β b
s Reflectance factor of substrate on black backing

β w
t Reflectance factor of patch on white backing

β b
t Reflectance factor of patch on black backing

T Cumulated effect of all tint layers relative to absolute white
p Area fraction covered with any tint
q 1− p, Unprinted area fraction
ti Effect of tints on light reflected in the bulk
tb Effect of tints on light reflected by the backing
τc Effect of correlated entry and exit
τu Effect of uncorrelated entry and exit
n Yule-Nielsen factor
ε Effective degree of correlation
γ Exponential parameter in regression model
ρ Internal reflectance coefficient
s Surface reflectance in internal reflectance model
k Geometrical correction in internal reflectance model
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(a) Ott model, eq. (1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CIELab Colour difference

prediction error

(b) Tristimulus model, eq. (2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CIELab Colour Difference

prediction error

(c) Gamma model with γ = 1.4, eq. (15)
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(d) Clapper-Yule model with solid approximation, eq. (20)

Figure 8. Cumulative distribution of the prediction error by model and target. Each gray line stands for one of the targets evaluated. Each target contained

several hundreds of colour patches measured. Thick black lines: quantiles averaged over all targets.


